From Galaxy Formation to Kinematics

christopher erick moody

In collaboration with: Joel Primack, Aaron Romanowsky, Greg Novak and TJ Cox.

Simulated Binary Mergers

- Simulated binary mergers and remergers with varying mass ratios, initial conditions, and orbital parameters at high resolution
- •Form galaxies with $\lambda < 0.1$, but are far too elongated $\epsilon = 0.0-0.4$

→ Do not form slow & round rotators in binary simulations

Simulated Multiple

- •Bournaud et al. 2007 simulated 10 1:10 mergers, 5 1:5 mergers, etc.
- Multiple mergers decrease remnant v/σ , form rounder remnants
- Results are independent of mass ratio; only dependent on remnant mass

Repeated mergers

→ Did not reach slow or round rotators, but there is a trend towards slow/round with multiple mergers (Bournaud et al. 2007)

Simulations: Progenitors Model spiral galaxies 1.0 All late-type galaxy models Designed to model SDSS 0.8 53gf+++ galaxies • D, Y, Z series are bulgeless G3gf+· 0.6 Sbo \bullet G3, G2, G1, G0 in order of fgas G3gf+ descending mass G0 0.4 •G3 also a gas fraction series G3 •G3BL is a G3 without a bulge 0.2 (not shown) Z G3gf- Sbc series have small bulges 0.0^{L}_{8} log stellar mass $(B/D \propto size of blue circle)$

→ Progenitors cover a range of gas fractions ('gf') and mass ranges, and may be bulgeless ('BL')

Schematic: Assembly **Binary mergers Sequential mergers Remergers** Orbit, E, rperi ϕ_1, θ_1 • Either G2 or G1 • Either G2 or G1 •Two progenitors • Either 4 or 8 Minor, major Also, 4 and 8 overlapping major+ progenitors mergers minor mergers • Every merger a is • R_{peri}, ϵ , always a remerger

Cosmologicallymotivated orbits. Not statistical. Randomly chosen initial orientations, impact parameters. Idealized simulations.

With increasing gas fraction: faster rotators, higher ellipticity

Binary Mergers: Orbital Variations

ellipticit

- Varying orbital initial conditions:
 - •Spin (pro/retrograde), varying pericenter, orbital ellipticities

 Only specially constructed initial zero angular momentum case is a slow rotator – but quite elongated

Multiple mergers: Major vs. minor

Both sets of simulations have same number of identical progenitors
 Multiple minor merger remnants are slower and rounder

Misalignments

Kinematic Classification

 ATLAS^{3D} finds kinematically decoupled cores and other non regular rotators with high frequency in their slow rotator sample
 How do these features arise?

•82% Fast Rotators

•17% Slow Rotators, many with either KDC or CRC features

ATLAS^{3D} Kinematic Classification

Polar orbits yield fast rotators but also KDCs

 Polar orbits impart significant momentum out of the plane of the progenitor galaxy

Face on velocity

1.0

Small-scale KDCs present in many velocity maps for sequential series

Major mergers result in a more disrupted remnant kinematic structure

Overall kinematic twist incidences

Multiple mergers have KT rates of 20%-90%
Binary mergers have KT <30%, with exceptions

Conclusions

• Binary mergers generically form fast rotators

•Slow rotators are in general not formed in dissipational binary major mergers. The exceptions depend on unique initial conditions:

• Bulgeless galaxies that are essentially dry mergerstill quite

Zero initial angular momentum
 Sequential multiple mergers can form round slow
 rotators

•Kinematic twists much more prevalent in polar orbits and slow rotators

Overall Trends (averaged over all projections)

- Spiral progenitors are at least 1:10 stellar mass ratio
- Effective number of progenitors is mass-weighted
- Semi-analytic models predict that the most massive systems form by multiple mergers
- Multiple, minor mergers are a relevant scenario

(Left: Bell et al. 2003, Right: de Lucia et al. 2006)

Title

(Cites)

Simulation parameters

Table 1. Properties of progenitor galaxy models. M_{tot} is total mass, baryons plus dark matter; c is concentration (R_{vir}/r_s) ; M_{stars} is the initial stellar mass; B/D is the bulge-to-disc ratio; f_g is the initial gas mass divided by M_{tot} ; $R_{1/2}$ is the initial three-dimensional stellar half-mass radius.

Туре	$M_{\rm tot}$ (10 ¹⁰ M _☉)	с	$M_{\rm stars}$ (10 ¹⁰ M _☉)	B/D	fg	R _{1/2} (kpc)
Milky Way	series					
D	1.4	20	0.036	0	0.025	1.16
Y	14.0	15	0.3	0	0.02	2.85
Z	143.0	12	5.1	0	0.004	4.04
Sbc series						
Sbc	81.4	11	4.92	0.26	0.066	7.15
G series						
G 0	5.0	14	0.1	0.02	0.012	1.84
G1	20.0	12	0.5	0.06	0.010	2.33
G2	51.0	9	1.5	0.11	0.009	2.90
G3	116.0	6	5.0	0.22	0.011	3.90
G3 gas fra	ction series					
G3gf1	116.0	6	3.6	0.32	0.023	3.49
G3gf2	116.0	6	2.6	0.52	0.031	2.89
G3gf3	116.0	6	1.5	1.34	0.040	1.77
G3gf4	116.0	6	5.3	0.20	0.005	3.96

(Covington 2008, Cox 2004, Cox et al. 2006)

Simulation parameters

Table 1. Progenitor galaxy properties, grouped by series.

Extra

Type	${M_{tot}\over 10^{10}M_{\odot}}$	с	M_{baryon} $10^{10} M_{\odot}$	f_{gas}	B/D	$R_{1/2}$ (kpc)
Milk Way	Series					
D	1.4	20	0.53	0.49	0	1.16
Y	14	15	0.76	0.48	0	2.85
Z	143	12	0.67	0.10	0	4.04
Sbc Series	3					
Sbc	81.4	11	10.00	0.52	0.26	7.15
G Series						
G0	5	14	0.44	0.38	0.02	1.84
G1	20	12	0.70	0.29	0.06	2.33
G2	51	9	2.00	0.23	0.11	2.9
G3	116	6	6.20	0.20	0.22	3.9
G3 gas fra	action series	3				
G3gf1	116	6	3.09	0.43	0.32	3.49
G3gf2	116	6	4.18	0.58	0.52	2.89
G3gf3	116	6	5.40	0.76	1.34	1.77
G3gf4	116	6	0.68	0.10	0.2	3.96

(Covington 2008, Cox 2004, Cox et al. 2006)